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Fully developed, incompressible, turbulent f low in a duct rotating about an orthogonal 
axis is considered. An integral technique, previously applied to rotating disc flows, is 
applied to the boundary layers, and this is patched to an approximate solution for the 
inviscid region of the flow. Limiting solutions are derived for 1 << 5 << R and 1 << 1/5 << R, 
where 5 and R are Rossby and Reynolds numbers, respectively. In the former case, the 
friction factor is predicted to be proportional to 1/5 °1R °2, which is consistent with Ito and 
Nanbu's (1971) measurements. Numerical solutions of the integral equations are com- 
pared with Ito and Nanbu's velocity and pressure measurements. 
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1. In t roduc t ion  

The problem of flow and heat transfer in a duct rotating about 
an orthogonal axis is relevant to gas turbine blade cooling, and 
the theoretical study of such flows has received considerable 
attention recently. Effort has been concentrated on the 
numerical solution of the Reynolds-averaged Navier-Stokes 
equations with some model of turbulence (e.g., Iacovides and 
Launder 1987; Taylor et al. 1991). In the present contribution 
an alternative theoretical technique, the integral method, is 
applied. The objectives of this work are to clarify the influence 
of rotation on duct flow and to assess the integral method for 
further use. 

A schematic of the secondary flow structure for the problem 
considered and the coordinate system used are shown in Figure 
1. The Coriolis force leads to a secondary flow from the leading 
to the trailing edge of the tube across the central core; this 
mass flux is balanced by flow in the opposite direction in 
boundary layers adjacent to the tube wall. The flow is 
characterized by a Reynolds number R and Rossby number e, 
defined by 

R = dwm/V , 5 = Wm/['~l (I) 

where d, win, v, and f~ denote duct diameter, mean axial velocity, 
kinematic viscosity, and rotational speed, respectively. 

An interesting analogy between rotating duct flow and 
rotating disc flows occurs in the limiting case 5 << I. Benton 
and Boyer's (1966) analytical solution for laminar flow is 
analogous to the Ekman boundary-layer solution that applies 
to many disc flows (see, e.g., Greenspan 1968). Similarly, an 
analytical solution of the momentum-integral equations for 
turbulent flow will be derived below for 5 << I, and this solution 
is analogous to Owen et al.'s (1985) turbulent Ekman-layer 
solution. Although this analogy cannot be applied directly to 
engine conditions, for which the Rossby number is generally 
greater than unity, it does suggest that the integral methods 
that have proved useful for disc flows (see, e.g., Chew 1990) 
might also be appropriate for rotating duct flows. 
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Integral methods have previously been applied to flow in a 
rotating circular duct by Moil  and Nakayama (1968) and Ito 
and Nanbu (1971) for the laminar case, and by Mori et al. 
(1971) for the turbulent case. Mori and his coworkers report 
agreement between theory and their own data, but Morris 
(1981) has noted some discrepancies with other data. Ito and 
Nanbu report fair agreement between their theory and 
measurements for laminar flow. In the light of other theoretical 
work and Ito and Nanbu's measurements, Moil  et al.'s 
assumption of a uniform boundary-layer thickness is highly 
questionable. 

The derivation of the momentum-integral equations for the 
boundary layers and the treatment of the inviscid core are 
described in the next section. Solutions to these equations and 
comparisons with experimental data are given in section 3. The 
principal conclusions are then given in section 4. 

Figuro 1 
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Coordinate system and schematic of secondary flow 
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2. T h e  m a t h e m a t i c a l  m o d e l  

A rotating cylindrical coordinate system (r, ®, z) is used as in 
Figure 1, with H denoting the distance of the origin from the 
axis of rotation. Velocity in this system is denoted (u, v, w), and 
nondimensional variables are defined as follows: 

(U, V, IV) = (u, v, W)/Wm 

f f  ij  = "~i jd / /2Wm 

x = 2r/d 

p = { p - [r 2 sin z 6) + (H + z)2]p~2/2}/(PW~/2) (2) 

Here ¢zi denotes the stress tensor components, including the 
laminar and turbulent contributions;/2 denotes viscosity, p is 
static pressure, and p is density. 

In fully developed flow it is assumed that axial gradients of 
velocity and stress vanish and the axial gradient of reduced 
pressure P is constant. Thus a nondimensional constant C is 
defined such that 

ddP 
C = - - -  (3) 

0z 

The momentum conservation equations may then be written 

UdU V OU V 2 W 1 OP 1 d 
+ sin 0 . . . .  + - -  (xtr,,) (4) 

dx x dO x e 2 dx Rx Ox 

UOV V OV UV W 
- -  + - -  - -  + cos 0 

gx x dO x 

1 dP 1 d 

- + Rx 2x O0 - -  Oxx (xa,o) (5) 

UdW V dW 1 
- -  + - -  - -  + - ( U  s i n  O + V c o s  ® )  

Ox x dO e 

C 1 d 
=--  + - -  ~ -  ( x a J  (6) 

Ox 

and the continuity equation gives 

dV 
d (xU) + 0 (7) 

0x gO 

As is consistent with the usual boundary-layer assumptions, 
circumferential gradients of shear stress have been neglected in 
Equations 4 to 6. 

For fully developed flow in a stationary duct (i.e., infinite e) 
there is no secondary flow, the left-hand side of Equation 6 
vanishes, and the pressure gradient is balanced by the 
shear-stress term on the right-hand side of Equation 6. This 
requires that shear-stress gradients are significant throughout 
the duct cross section. For flow in a rotating pipe, secondary 
velocities U and V are generated by the Coriolis terms in 
Equations 4 and 5. The left-hand side of Equation 6 is then 
nonzero, and for R >> 1 the solution will have a boundary-layer 
form, the shear-stress terms only being significant in a region 
close to the wall  Separate treatments are appropriate for the 
core and boundary-layer regions, and these are described 
below. It will be assumed that the boundary-layer thickness is 
much smaller than the duct diameter and that the same 
thickness applies to both the axial and secondary velocity 
components. 

2.1. The inv isc id  core 

The equations for this region are obtained by neglecting the 
shear-stress terms in Equations 4 to 7. It is easy to see that an 
exact solution of these equations is 

U = k s i n O ,  V = k c o s ® ,  W = W o +  - x s i n ® ,  

Cz 1(4 P = P o + - - + - - x s i n ® + -  - x 2sin 2 0  (8) 
d e e 

where k, Wo, and P® are arbitrary constants. It is important to 
note that this is not the only possible solution. This solution 
was used by Mori and coworkers (1968, 1971) to describe the 

N o t a t i o n  

C Non-dimensional pressure gradient, Equation 3 
Cs, Value of C for a stationary duct 
d Duct diameter 
H Distance of coordinates'  origin from rotation axis 
J Constants, Equation 28 
m Secondary mass flow rate in boundary layer per unit 

length 
M Nondimensional flow rate = m/pwmd 
p Static pressure 
P Reduced pressure, Equation 2 
r Radial coordinate 
R Reynolds number = wmd/v 
u Radial velocity component 
U Nondimensional radial velocity = U/Wm 
U* X-direction velocity component, Equation 13 
v Tangential velocity component 
V Nondimensional tangential velocity = v/w~ 
V* Y-direction velocity component, Equation 13 
w Axial velocity component 
w m Mean axial velocity 
W Nondimensional axial velocity = W/Wm 

x Nondimensional radial coordinate = 2rid 
X Cartesian coordinate, Equation 13 
Y Cartesian coordinate, Equation 13 
z Axial coordinate 

Greek symbols 

= RO-leo.2 
6 Nondimensional boundary-layer thickness 

= dimcnsional thickness/(d/2) 
e Rossby number = Wm/D.d 
r/ Boundary-layer coordinate = (1 - x)/6 
O Tangential coordinate 
/2 Fluid viscosity 
v Fluid kinematic viscosity =/2/p 
p Fluid density 
a Nondimensional stress tensor components, Equation 2 
z Stress tensor components 
f~ Angular velocity of rotation 

Superscripts 

~ Values at the boundary-layer edge r /=  1 
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core flow. In the present investigation, difficulties were 
encountered in trying to patch this solution to the 
boundary-layer solution, and it was concluded that this 
particular solution may be inappropriate for this problem. In 
Moil  et al.'s work, the core flow was assumed to have the above 
form, but it was also assumed that the boundary-layer thickness 
did not  vary with ®, and variation with ® of some other terms 
was neglected. 

If it is assumed that the secondary velocities U and V are 
small in this region (compared to W), a general solution for the 
core flow may be obtained. To derive this solution it is useful 
to switch to a Cartesian coordinate system. Neglecting 
second-order terms in U and V and performing some algebraic 
manipulat ion,  Equations 4 to 7 give, for the inviscid core, 

0P 
- -  = 0 ( 9 )  
OX 

c~P 2W 
- ( 1 0 )  

?Y e 

V , ( O W  ! )  u ,  ~ W  C (11) 
\ ~  + + OX - 4 

~U* ~V* 
- -  + = 0 ( 1 2 )  
OX ~Y 

where 

X = x cos ®, Y = x sin (9 (13) 

U * = U cos ® - V sin ®, V* = U sin ® + V cos ® 

Equations 9 and 10 imply that 

OW 
- 0 (14) 

OX 

Using this result and differentiating Equation 11, it follows that 

c~V* 
- 0 ( 1 5 )  

OX 

With Equation 14, Equation 11 reduces to 

6~W C 1 
- ( 1 6 )  

c~Y 4V* e 

and using the fact that U = 0 on the symmetry plane X = 0, 
Equation 12 may be integrated to give 

X~gV* 
U* - (17) 

dY 

If m(®) denotes the secondary mass flow rate in the boundary  
layer per unit  length and M = m/pw=d, then the condit ion that 
this flow is balanced by the mass flow across the core requires 

(1  - f) cos ®[V*Jr=(l_o)sin o ~- - 2 M  (18) 

where fd/2 is the boundary-layer thickness. 
Converting back to the cylindrical coordinate system, 

neglecting first- and higher-order terms in 5, and considering 
values at the boundary-layer edge (denoted by a tilde), 
Equations 10, 16, and 18 give 

d P 2 Iff: 
- cos ® (19) 

d® e 

dl$' cos ® C 
COS 2 ® (20) 

dO e 8M 

cos 0 ( 0  sin O + 17 cos O) = - 2 M  (21) 

From the continuity equation it also follows that 

dM 
[7 = 2 - -  (22) 

dO 

A similar core solution to this was derived by It® and Nanbu  
(1971) in their laminar flow analysis. However, with these 
workers'  approximations, the term involving 1/e in Equation 
20 would be neglected. 

2.2. The momentum- in tegra l  equations for the 
boundary layer 

The boundary-layer equations are obtained from Equations 4 
to 7, assuming that 6 << 1. The validity of this assumption will 
be further discussed later. With the usual boundary-layer 
assumptions, the radial momentum equation reduces to 

OP 
- -  = 0 (23) 
~x 

The following boundary-layer velocity profiles are assumed: 

W = #(O)o(,~) 

V = Vo(O)f(r/) (24) 

where V0 is an unspecified function of O, and 

q = (1 - x)/ f ,  g(q) = rll/7, f (q)  = (1 - r/)q a/7 (25) 

These profiles are similar to those used in momentum-integral  
solutions for rotating disc flows, which were first introduced 
by von Karman  (1921). Note that the appropriate boundary 
conditions for W and V at r /=  0 and 1 are approximately 
satisfied by this choice of profile, since for f << 1 it follows that 
9 << Vo. 

Integrating Equations 5 and 6 from q = 0 to 1 using 
Equations 23 to 25 and the assumption f << 1 and f << c gives, 
after some algebraic manipulation,  

2J::Vo--+dV o 1 dP JgI~cos  0 -~ J y I V  2 d3 a,o,w 

dO 2 dO e 3 dO 3R 
(26) 

dye + dff" V® ~¢da 
?¢(J:" - J:) dO J:.  V® ~ - (J:. - J:) f a® 

J f V o c o s O  C a . . . .  
+ - (27) 

e 4 fiR 

where the subscript w denotes a value at the wall and the J's 
are constants with the following values. 

J :  = 0.408333, J ,  = 0.875, 

J : f  = 0.207126, J:a = 0.340278 (28) 

Integrating across the boundary  layer to find the secondary 
mass flow rate in the boundary  layer gives 

M = f VoJy/2 (29) 

Blasius law is used to estimate the wall shear stress and, using 
similar assumptions to those of von Karman  and others for 
rotating disc flows, a . . . .  and a,e.w are given by 

a . . . .  = _0.02676RO.VSl,~(Vo 2 + [/~,r2)o.375/fo.25 (30) 

a,o.w = Voa,z.w/ff" (31) 

A further useful relationship is obtained by integrating across 
the duct area to find the axial flow rate and using the definition 
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of w=. This gives for 6 << 1 

,,/2 I~ cos 2 0 dO = n/2 
-hi2 

(32) 

1.5' 

3. So lu t ions  

The momentum-integral equations (Equations 26 and 27) with 
the auxiliary relations (Equations 28 to 32), plus the core 
equations (Equations 19 to 22), define the mathematical 
problem for calculating the flow field. The independent 
variables of the l~roblem are R, e, and 0 .  The dependent 
variables are C, W(O), Vo(O), I7(O), U(O), M(O), P(O), 6(O), 
a,=.w(O), and a,o.,(O ). Solutions to this system are described 
below. 

3 . 1 .  T h e  l i m i t i n g  c o n d i t i o n s  e << 1 << R 

For these conditions an analytical solution is possible, 
analogous to Owen et al.'s (1985) linear turbulent Ekman layer 
solution. 

Neglecting higher-order terms, Equations 26 and 27 with 
Equations 19, 30, and 31 reduce to 

(1 - J¢)W cos O/e 

= -0.02676Vo(Vo 2 + #2)°'375/(R°'256L2s) (33) 

J:Vo cos O/e = -0 .02676#(V 2 + #2)°'375/(R°'2561"25) (34) 

From Equations 20 and 29, it may be deduced that 

eC cos 0 /4  = - J : 6  V 0 (35) 

Equations 32 to 35 may be solved to give C, I~'(O), Vo(O ), 
and 5(O) in terms of e and R. Using Equations 28 for the J 
coefficients, it is straightforward to show that this solution is 

# = A cosLt2sO 

Vo = -0 .5533I~ (36) 
6 = 0.1966A°'%(eR) -°'2 cos -°'125 O 

C = 0.1777AL6(eR) -°'2 

where 

A = n cos 3"125 ® dO (37) 

In deriving the momentum integral equations, it was 
assumed that 6 << e. The above solution is consistent with this 
assumption, provided (eR) °'2 is large. Hence, the range of 
applicability may be restricted to 1 << 1/e << R. Of course, in the 
region of O = n/2 and - ~/2, the boundary-layer assumptions 
will not be valid, and some local departures from this solution 
are to be expected. 

3.2. The l im i t i ng  c o n d i t i o n s  1 << e << R 

F o r  these condi t ions,  Equa t i on  20 reduces to  

dig: C cos 2 0 
- ( 3 8 )  

dO 8M 

From order-of-magnitude considerations, it might be expected 
that Vo << 1. The momentum equations (Equations 26 and 27), 

using Equations 19, 30, and 31, may therefore be written 

dVo # J ::V2o d6 
2J/yV o ~ + (1 - Jo) - -  cos O -t 

e 6 dO 

0.02676 
- 6(6R)O.25 Vol g:[o.75 (39) 

dVo d #  Vo #d6 
#(J:. - J:) ~ + J:~ Vo -~ - (J:, - J:) 6 d O  

_ 0.02676 [,~71 ]/~/-1o.75 (40) 
~ tR)  0.25 

It is convenient to define c t=R° '2e  °'x. Inspection of 
Equations 38 to 40 with Equations 29, 32, 19, 21, and 22 shows 
that a solution is possible in which ctC is constant and I~', 
Vox/e, ott/x/e, aM, Pc, ~17, o(0, ~a,o,,,/R, and ~tr,=.,/R are 
functions of ® only. 

The first-order differential equations (Equations 38 to 40 and 
Equation 19) were solved numerically using a variable step gear 
method, as implemented in a mathematical subroutine library. 
The solution starts at the trailing edge ® = ~/2 and marches 
in the direction of the boundary-layer flow to the leading edge 
at ® = -r t /2.  In addition to the Reynolds number  R and 
Rossby number e, starting values of 5, Vo, and if" and of the 
pressure gradient C must be specified in this solution. Vo at 
® = lt/2 was set to a very small value (typically 10 -8) to ensure 
that the initial mass flow in the boundary layer was very small. 
The solution was then found to be insensitive to the starting 
value of 5, which was set to be of order R-° '2;  a rapid 
readjustment of & then occurred close to ® = n/2. An iterative 
technique was used to find values of if" at ® = ~/2 and C for 
which both Equation 32 and the condition that the 
boundary-layer mass flow at ® = r~/2 must be zero were 
satisfied. 

The numerical solution is shown in Figure 2. According to 

Figure 2 

1.0. 

sin 0 

O.S- 

0.0 
-1.0 

~ 8~0,2/~0,4 

10Ora w~ 0.1/R 0.8 

o:o 1;o 

s(P-P0=o) 

_~0.5Vo 

- 1  

-2 
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-1.0 0.0 

sin 0 

Solution for 1 << ~ << R 

1.0 
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the solution, the nondimensional pressure gradient is given by 

C = 0.268e-°' lR -°'2 (41) 

If C~t denotes the pressure drop coefficient for a stationary pipe 
given by the Blasius formula, this result may be written 

C/C~t = 0.878e -° ' lR° '°s  (42) 

3.3. Compar i son  w i t h  measurements  

In this section the solution given in section 3.2 and numerical 
solutions of the equations given in section 2 (assuming t5 << 1) 
are compared with Ito and Nanbu's (1971) measurements for 
fully developed flow in a circular duct. The numerical solutions 
were obtained using a similar method to that described in 
section 3.2. 

Figure 3 shows the increase in the pressure drop coefficient 
due to rotation. Ito and Nanbu correlated their results against 
R/e 2. For 15 < R/~ 2 < 500, they give the correlation 

C/C~ t = 0.924e-0.1R °.°5 (43) 

Some correspondence between this result and the limiting 
solution (Equation 42) is clear. Computed solutions at finite 
values of R and ~ indicate that the value of R/e z does not 
uniquely define C/C,t; there is an additional, relatively small 
Reynolds number effect. It is quite possible that in the 
experiments, which only covered a limited range of R, this effect 
could have been missed, The values of R of 5 x 103 and 105 
for which numerical solutions are given are roughly 
representative of the experimental range. It should be noted 
that the numerical results were obtained by integrating the 
shear stress over the duct surface using the calculated solution 
for velocities and boundary-layer thickness. Owing to the 
assumptions made in the analysis not being strictly valid for 
these conditions, these differed from the values of C specified 
in the governing equations. In particular, when calculating the 
core flow, no account is taken of the reduction in cross-section 
area due to the boundary layer, so there is some double 
accounting of the specified pressure gradient over the 
boundary-layer regions. Discrepancies of the order of 20% in 
this overall force balance were observed; these are consistent 
with the values calculated for 6 given below. 

Figure 4 gives a comparison between theory and Ito and 
Nanbu's measurements of axial velocity on the symmetry plane 
and the circumferential variation of pressure at the pipe wall. 
The predicted boundary-layer thickness at the leading and 

C/Cst 
1.4" 

1.3- R=5x103 

, , ~  5 :/'1°~ 
~ f . ' / '  . t  R ~ ¢c 

. t j"  . 
. d / •  •~  

; I  . / .  / 

, s • •  s • 
1.1 ~ . ' s "  ~ . , , "  • / "  . V:- /." 

9 .  p . / .  
. I " .  ~.. 

• 2 • / 1 .  

1.o . . . . . . . . . . . .  go' "~6o ' ' 'sro' 1ooo 5 10 
R/e 2 

Figure 3 Pressure drop coef f ic ient•  - . . . .  : present  ca lcu la t ions ;  
- - :  exper imenta l  measurements  ( I to  and Nanbu 1971 ) 

1.5- 

1.0 
w 

0.6' 

0 i r 
-1.o olo 11o 
0 = -hi2 X O = -n/2 

(a) 

~(P-Pe=o) 
3- 

/ 
2- / "  

) / /  

1 

0 

-1 
/ 

J 
-2 

sin(0) 
(b) 

Figure 4 Results fo r  R = 2.5 x 104, e = 25. (a) Ax ia l  ve loc i ty  on 
symmetry plane; (b) circumferential variation of pressure. - - :  
present calculations; - - - :  experimental correlations (Ito and 
Nanbu 1971 ) 

trailing edges is also indicated in Figure 4a; these appear to be 
in good agreement with measurement. Clearly the assumption 
& << 1 is highly questionable for these conditions. Discrepancies 
between theory and experiment near the trailing edge can be 
attributed to the relatively large boundary-layer thickness in 
this region. The differences near the leading edge are more 
difficult to explain, since 6 is small in this region. Since the 
local Reynolds number will be lower in this region, it is possible 
that the assumed 1/Tth power laws are inappropriate here, or 
even that the flow is locally laminar. 

3.4. Range o f  va l id i ty  o f  the m o d e l  

It is of interest to consider under what conditions the above 
analysis is likely to be valid. In deriving the mathematical 
model it was assumed that the secondary velocity in the core 
was relatively small and that the boundary layer was very thin. 
These two assumptions can be justified if ~V .2 << 1 and t5 << 1. 
Calculations were performed to see for what range of e and R 
these conditions are satisfied. Problems with convergence of 
the numerical solution algorithms were encountered for small 
values of e, and so attention here is confined to e >_ 1. 

Figure 5 shows the computed values of eV .2 and fi at O = 0 
for various values of e and R. The hatched area on these graphs 
denotes the parameter range 10 < e < 100, 104 < R < 105, 
which is representative of engine conditions. These results 
confirm that ~V .2 is small, but indicate that the assumption 
& << 1 will only be valid for very high Reynolds number flow. 
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EV .2 
0.015' R = 5x 10%104 

0,010 ,106 
0.005 

lO 10 
o 

5 lO 50 lOO 500 lOOO 

(a) 

6 R=5xl0 3 
0.0.3 4 $ 1  ~ , / 1 0  5 

0.2 ~ 106 
0.1 

~1o lo 

o 
. . . .  ~'"~b ' " 'so"Y6o ' ' "sb6'it~0 E 

(b) 

Figure 5 Solution at ® = 0. (a) Core secondary velocity eV*2; (b) 
boundary-layer thickness ft. Hashed areas are typical engine 
parameter range 

4. C o n c l u s i o n s  

A momentum-integral method, previously used for rotating 
disc flows, has been applied to the problem of fully developed 
flow in a circular duct rotating about an orthogonal axis. It is 
assumed that the secondary velocities in the inviscid core are 
small (relative to the axial velocity) and that the boundary-layer 
thickness is much less than the duct diameter. An analytical 
solution is derived for the limiting conditions 1 << 1/e << R, and 
a solution for 1 << e << R is found using numerical methods. 
Numerical methods are also used to obtain solutions of the 
equations for finite values of e and R. Although the solutions 
are valid for both radial inflow and outflow, attention has been 
centered on radial outflow, for which some experimental data 
are available. 

Good qualitative and some quantitative agreement between 
the momentum-integral solution and Ito and Nanbu's (1971) 
pressure drop measurements was found. For 1 << e << R, the 
solution predicts the pressure drop coefficient divided by the 
stationary tube value to be 0.878e-o.~ RO.OS, compared with Ito 

and Nanbu's empirical correlation 0.924e-°'lR °'°s. Solutions 
of the integral model for values of R and e comparable to the 
experimental range indicate a dependency on Reynolds number 
that was not observed experimentally, possibly due to only a 
limited parameter range being investigated experimentally. 
Differences between the theory and measurements are 
attributed, at least in part, to the assumption of very small 
boundary-layer thickness. The calculations suggest that the 
boundary-layer thickness will only be negligibly small for 
Reynolds numbers much higher than those representative of 
turbine blade cooling passages. 

The circumferential variation of pressure on the duct wall is 
in reasonable agreement with Ito and Nanbu's measurements, 
some discrepancies being evident near the leading side. The 
axial velocity profiles show further departure from the measure- 
ments. Near the trailing edge, these can be attributed to the 
relatively thick boundary layer in this region. Near the leading 
edge, the local Reynolds number is lower, and it is likely that 
the assumed velocity and shear stress relations are not valid. 
The flow may even be laminar in the vicinity of the leading 
edge. Predicted boundary-layer thicknesses are consistent with 
the velocity measurements. 

A c k n o w l e d g m e n t s  

The assistance of Mr. P. D. Clark with the numerical solution 
is gratefully acknowledged. 

R e f e r e n c e s  

Benton, G. S. and Boyer, D. 1966. Flow through a rapidly rotating 
conduit of arbitrary cross-section. J. Fluid Mech., 26, 69-79 

Chew, J. W. 1990. Prediction of rotating disc flow and heat transfer 
in gas turbine engines. Proc. Third Int. Syrup. Transport 
Phenomena and Dynamics of Rotating Machinery, Hawaii, 
Hemisphere Corp., 145-160 

Greenspan, H. P. 1968. The Theory of Rotating Fluids. Cambridge 
University Press, Cambridge, UK 

Iacovides, H. and Launder, B. E. 1987. Turbulent momentum and 
heat transport in square-sectioned ducts rotating in orthogonal 
mode. Numer. Heat Transfer, 12, 475~,91 

Ito, H. and Nanbu, K. 1971. Flow in rotating straight pipes of 
circular cross section. ASME J. Basic Eng., 383-394 

von Karman, T., 1921. Uber laminare und turbulente reibung. Z. 
Angew. Math. Mech., 1, 233-252 

Mori, Y., Fukada, T., and Nakayama, W. 1971. Convective heat 
transfer in a rotating radial circular pipe (2nd report). Int. J. Heat 
Mass Transfer, 14, 1807-1824 

Mori, Y. and Nakayama, W. 1968. Convective heat transfer in 
rotating radial circular pipes (lst report, laminar region). Int. J. 
Heat Mass Transfer, 11, 1027-1040 

Morris, W. D. 1981. Heat Transfer and Fluid Flow in Rotating 
Coolant Channels. Research Studies Press, Letchworth, UK 

Owen, J. M., Pincombe, J. R., and Rogers, R. H. 1985. Source-sink 
flow inside a rotating cylindrical cavity. J. Fluid Mech., 155, 233-265 

Taylor, C., Xia, J. Y., Medwell, J. O., and Morris, W. D. 1991. Finite 
element modelling of flow and heat transfer in turbine blade 
cooling ducts. I. Mech. E. paper C423/037 

Int. J. Heat and Fluid Flow, Vol. 14, No. 3, September 1993 245 


